Class Representative Visual Words for Category-Level Object Recognition
نویسندگان
چکیده
Recent works in object recognition often use visual words, i.e. vector quantized local descriptors extracted from the images. In this paper we present a novel method to build such a codebook with class representative vectors. This method, coined Cluster Precision Maximization (CPM), is based on a new measure of the cluster precision and on an optimization procedure that leads any clustering algorithm towards class representative visual words. We compare our procedure with other measures of cluster precision and present the integration of a Reciprocal Nearest Neighbor (RNN) clustering algorithm in the CPM method. In the experiments, on a subset of the the Caltech101 database, we analyze several vocabularies obtained with different local descriptors and different clustering algorithms, and we show that the vocabularies obtained with the CPM process perform best in a category-level object recognition system using a Support Vector Machine (SVM).
منابع مشابه
Towards a more discriminative and semantic visual vocabulary
We present a novel method for constructing a visual vocabulary that takes into account the class labels of images, thus resulting in better recognition performance and more efficient learning. Our method consists of two stages: Cluster Precision Maximisation (CPM) and Adaptive Refinement. In the first stage, a Reciprocal Nearest Neighbours (RNN) clustering algorithm is guided towards class repr...
متن کاملUnknown Object Identification Using Category Visual Words with Rejection Function
In this paper, we introduce an identification method for unknown category objects. Most popular conventional methods in object recognition use Bag of Features (BoF) that represents the image as an appearance frequency histogram of common visual words by quantizing SIFT features. However, this method is unable to identify unknown objects because the common visual words cannot represent the unkno...
متن کاملEvaluation of Bag of Visual Words for Category Level Object Recognition
Object recognition in a large scale collection of images has become an important application in machine vision. The recent advances in the object or image recognition for classification of objects shows that Bag-of-visual words approach is a better method for image classification problems. In this work, the effect of different possible parameters and performance evaluation of Bag of visual word...
متن کاملScene and Object Recognition with Supervised Nonlinear Neighborhood Embedding
Image category recognition is important to access visual information on the level of objects and scene types. In this paper, we develop a Supervised Nonlinear Neighborhood Embedding (SNNE) subspace algorithm of different visual features for object and scene recognition, which learns an adaptive nonlinear subspace by preserving the neighborhood structure of the visual feature space. In the propo...
متن کاملشناسایی نوع و مدل وسیله نقلیه با استفاده از مجموعه بخشهای متمایزکننده
In fine-grained recognition, the main category of object is well known and the goal is to determine the subcategory or fine-grained category. Vehicle make and model recognition (VMMR) is a fine-grained classification problem. It includes several challenges like the large number of classes, substantial inner-class and small inter-class distance. VMMR can be utilized when license plate numbers ca...
متن کامل